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Motivation 

• Emergency situations (e.g. runway incursion, 

airframe damage, etc.) may warrant unconventional 

usage of aircraft engines 

• Previous work: 

– Increased maximum thrust output (overthrust) 

– Enhanced dynamic thrust response 

– Enhanced engine performance and failure risk 

– Risk assessment: vehicle & engine risk balancing 

4 

 Litt et al., “A Risk Assessment Architecture for Enhanced Engine Operation,” AIAA Infotech@Aerospace Conference, 2010. 

 Csank et al., “Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation,” AIAA 

Infotech@Aerospace Conference, 2011. 

 McGlynn et al., “A Risk Management Architecture for Emergency Integrated Aircraft Control,” AIAA Infotech@Aerospace 

Conference, 2011. 

 Csank et al., “The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine,” 47th 

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011. 

 May et al., “Improving Engine Responsiveness during Approach through High Speed Idle Control,” 47th 

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011. 
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Objective 

• Design control modes that provide enhanced 

performance based on consistent risk elevation 

• Considerations: 

– Identify performance parameter(s) to be enhanced 

– Identify and characterize relevant engine failure or 

malfunction mode(s) 

– Designate allowable elevated probability of failure (i.e. 

vehicle/engine risk tradeoff) 

• Develop performance-enhancing control logic 

• Demonstrate on previously introduced concepts of 

overthrust and faster response using computer 

simulation of commercial-type turbofan engine 
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Simulation: C-MAPSS40k 
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• Commercial Modular Aero-Propulsion System Simulation 40k 

• 40,000-lb thrust class, high-bypass, dual-spool turbofan engine 

• Component performance maps 

• Zero-dimensional, spool dynamics 

• NASA Software Catalog (https://sr.grc.nasa.gov/) 

 

https://sr.grc.nasa.gov/
https://sr.grc.nasa.gov/
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Simulation: Control System 
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• Throttle command (PLA) provides setpoint for gain-

scheduled PI feedback control on engine pressure 

ratio (EPR) 

• Max/min regulators for limit protection 
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Overthrust: Design Considerations 

• Increase engine thrust output beyond design 

maximum levels 

• Risk: failure of disk or blade with contained debris 

• FAA regulation on allowable rate of occurrence for 

contained failure types: 10-7 to 10-5 per flight hour 

(Aeronautics and Space, 14 C.F.R. pt. 33.75) 

• Allowable elevated risk level for enhanced 

performance: 10-3 per flight hour 
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Overthrust: Risk Function 

• Calculates risk of disk and blade 

failure as function of operating 

conditions 

– Fan speed (Nf) 

– Core speed (Nc) 

– HPT inlet temperature (T40) 

– HPT exit temperature (T48) 

– LPT exit temperature (T50) 

• Tested at 1,251 operating points 

across operating envelope 

– Maximum power setting 

– Altitude 0 to 40,000 feet 

– Mach number 0 to 0.8  

– Standard ambient temperature to 

+40°R 

– New to fully deteriorated engine 
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Litt et al., “A Risk Assessment Architecture for Enhanced Engine Operation,” 

AIAA Infotech@Aerospace Conference, 2010. 

Test Case 
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Overthrust: Implementation 

• Reduced-order risk function 

used for control design and 

implementation (NOT used 

when evaluating results) 

• Disk failure risk as function of 

core speed 

• Blade failure risk as function of 

core speed and single turbine 

temperature 

• Allowable elevated risk (10-3) 

manifested as: 

– Core speed limit for disk failure 

– Speed-temperature boundary 

for blade failure 
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Overthrust: Implementation 
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• Core speed and turbine temperature regulators used to 

maintain engine operating point on risk boundary  

• Overthrust activation: PLA mapping switches from idle-

to-max to idle-to-overthrust 

 

 

Baseline 

Overthrust 
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Overthrust: Results 

• Tested at 180 operating points (0 to 

4000 feet, Mach 0 to 0.3, standard to 

+40°R ambient temp, new to full 

deterioration) 

• Maximum power setting: baseline vs. 

overthrust 

• Nc-T48 reduced-order risk boundary 

(LPT inlet temperature) 
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Faster Response: Design Considerations 

• Reduce time required for idle-to-full power thrust 

transients 

• Risk: high-pressure compressor stall/surge 

• No FAA requirement on probability of stall/surge 

• Allowable elevated risk level for enhanced 

performance: 10-3 
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Faster Response: Risk Function 

• Statistical stability assessment (SAE 

AIR1419 Rev. A, 1999) 

• Risk of stall modeled as normal 

distribution 
– Stall margin reported by simulation equals 

mean 

– Root-sum-square of random effects equals 3 

standard deviations 

• Stall probability of 10-3 corresponds to 

~2.3% stall margin 
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  Destabilizing Effects Non-random Random 

Operating Line Inlet Distortion 0.7% - 

  PLA Transient 6.0% - 

  Fuel Control Tolerance - ±1.15% 

  Engine-to-Engine Variation - ±1.25% 

        

Surge Line Reynolds Number 0.36% - 

  Inlet Distortion 7.5% - 

  Engine-to-Engine Variation - ±1.35% 

        

Total   14.56% 2.17% 
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Faster Response: Implementation 

15 

• Shifting acceleration schedule allows for faster dynamic response with lower 

minimum stall margin 

• Iterative search conducted at 60 operating points (0 to 4000 feet, Mach 0 to 0.2, 

standard to +40°R ambient temperature, new to full deterioration) to determine offset 

values 

• Implementation: 4-D interpolation on operating conditions to determine offset value 

 
 Csank et al., “The Effect of Modified Control Limits on the Performance of a Generic Commercial 

Aircraft Engine,” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011. 

 May et al., “Improving Engine Responsiveness during Approach through High Speed Idle Control,” 

47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011. 
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Faster Response: Results 

• Tested at 540 

operating points (within 

interpolation range) 

• PLA from flight idle to 

maximum in 0.1 

seconds 

• Rise time: time to 

traverse 10% to 90% of 

difference between 

initial and final thrust 

levels 
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Summary & Future Work 

• Enhanced engine performance based on consistent 

risk elevation 

• Demonstration of implementation on previously 

introduced enhanced performance concepts 

• Characterization of engine failure/malfunction risk 

• Ongoing & future work: 

– Implementation and pilot testing in flight simulator 

– Faster response mode with stall margin estimation 

17 


